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Abstract

Understanding the mechanisms that drive prey selection is a major challenge in foraging ecology. Most studies of foraging
strategies have focused on behavioural costs, and have generally failed to recognize that differences in the quality of prey
may be as important to predators as the costs of acquisition. Here, we tested whether there is a relationship between the
quality of diets (kJ?g21) consumed by cetaceans in the North Atlantic and their metabolic costs of living as estimated by
indicators of muscle performance (mitochondrial density, n = 60, and lipid content, n = 37). We found that the cost of living
of 11 cetacean species is tightly coupled with the quality of prey they consume. This relationship between diet quality and
cost of living appears to be independent of phylogeny and body size, and runs counter to predictions that stem from the
well-known scaling relationships between mass and metabolic rates. Our finding suggests that the quality of prey rather
than the sheer quantity of food is a major determinant of foraging strategies employed by predators to meet their specific
energy requirements. This predator-specific dependence on food quality appears to reflect the evolution of ecological
strategies at a species level, and has implications for risk assessment associated with the consequences of changing the
quality and quantities of prey available to top predators in marine ecosystems.
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Introduction

The primary quest of animals is to obtain sufficient energy from

food to maintain vital functions (i.e., basal metabolic rate) and

support physiological and physical activities (e.g., costs of foraging,

reproduction, and thermoregulation). Energy needed to fulfil the

daily needs of animals can be considered an organism’s cost of

living. It can be thought of as the energetic cost of sustaining a life,

and varies by time of year, habitat, and life-history stage [1–3].

Such physical and biological differences mean that species with the

same body masses may differ greatly in their respective costs of

living despite the general relationship across the animal kingdom

between body size (mass) and basal energy requirements [4].

Indeed, field metabolic rates of equivalent-sized homoeothermic

species can differ by as much as 6 orders of magnitude [5].

In theory, the physiologies, morphologies and social systems of

predators have been shaped by evolutionary processes that

optimise prey capture or handling [6,7]. The general acceptance

that predators should attempt to maximize their energetic return

during feeding events has resulted in energy fluxes becoming the

primary underpinning of foraging theory frameworks [8] such as

optimal foraging theory [9–11]. The primary tenet of optimal

foraging theory is that natural selection should favour predators

that maximize energy gained and minimize energy spent while

foraging. Most foraging studies placed within this framework have

focused on behavioural costs associated with handling time,

pursuit time or the critical size of food patches [12]. They tend to

recognize the importance that quantity of prey (i.e., biomass

ingested per time unit) has on foraging behaviour, but generally

overlook the importance that quality of prey (e.g., the energy

acquired per unit of prey mass consumed) may play in influencing

prey selection and ultimately determining the fitness of a predator.

This shortcoming appears to be particularly true in marine

ecosystems, where growing evidence suggests that the population

dynamics of some species of top predators may be negatively

affected when diets change from high-energy prey to lower-energy

species [13,14].

Marine mammals exhibit a large range of foraging strategies.

Some are considered specialists, such as sirenians that graze on

aquatic plants [15] or common dolphins (Delphinus delphis) that fulfil

their high energy requirements with a diet mainly composed of

caloric rich food [16]. However, small cetaceans and pinnipeds are
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most often described as opportunistic or generalist feeders with

little or no feeding preferences. This categorization of their

foraging strategies appears to be based on the taxonomic diversity

of prey they consume, and fails to consider the functional

characteristics of prey that are important to predators. It is thus

commonly believed that marine mammals can thrive eating

anything so long as there is sufficient biomass. Hence, fisheries

models have tended to focus on the quantities of food consumed

by marine mammals [17], but have generally failed to recognize

that differences in the quality of prey may be as important to

marine mammals as the sheer quantities of food.

Field observations and captive feeding studies suggest that some

species of marine mammals may not be able to thrive on abundant

low-energy prey whereas others may be less constrained by the

quality of food they consume [14,16]. Quantity cannot always

replace quality [18,19]. However, the extent to which this

conclusion might be generalized and applied across all predator

species remains untested despite the implication it holds for

ecological theories and wildlife conservation.

We postulated that the costs of living for whales, dolphins and

porpoises (cetaceans) should determine the quality of prey they

consume, and tested whether such a relationship between diet

quality and cost of living holds true across 11 phylogenetically–and

ecologically–diverse species of cetaceans from the Northeast

Atlantic Ocean. To this end, we used the mean energy density

of prey recovered from stomachs as a proxy for diet quality, and

used structural indicators of muscle performance (i.e., mitochon-

drial density and lipid content) measured from freshly dead

animals as proxies for metabolic costs of living. We recognize that

nutrient composition (e.g., amino acids, vitamins, etc.) also

contribute to prey quality, but chose to only use energy density

because it is readily available for most prey species and is a widely

accepted metric of prey quality.

Materials and Methods

Diet Quality
Diets were determined from stomach content analysis reported

in 32 studies for 3585 individual cetaceans feeding on 127 different

prey species. We compiled the diet composition from published

stomach content analyses for 11 species of cetaceans in the

Northeast Atlantic belonging to 6 families (Balaenopteridae,

Phocoenidae, Delphinidae, Ziphiidae, Physeteridae and Kogii-

dae): minke whale (Balaenoptera acutorostrata), fin whale (Balaenoptera

physalus), harbour porpoise (Phocoena phocoena), common dolphin

(Delphinus delphis), striped dolphin (Stenella coeruleoalba), bottlenose

dolphin (Tursiops truncatus), long-finned pilot whale (Globicephala

melas), Cuvier’s beaked whale (Ziphius cavirostris), Mesoplodon beaked

whale (Mesoplodon spp.), sperm whale (Physeter macrocephalus) and

pygmy sperm whale (Kogia breviceps) [20–46]. Dietary data from

stomach content analysis included prey species, and their numbers

and mass, following standard analytical methods [30,43,47]. We

obtained energy densities for 99 of the 127 prey species from

proximate analyses. Energy densities were compiled for a wide

range of marine forage species, including mesopelagic fish from

the northeast Atlantic Ocean [48]. Additional data on energy

densities for oceanic cephalopods were also used [49]. We then

multiplied the ingested biomass by the energy density (kJNg21 wet

mass) of each prey species consumed by each cetacean species to

determine the mean energy value (quality) of a diet.

Proxies for the Metabolic Cost of Living
We quantified the metabolic cost of living for each of the 11

species of cetaceans based on the structural characteristics of

performance (i.e., mitochondrial density and lipid content) from

muscle samples taken from 68 by-caught and beach-cast

individuals (Table 1). All were adults in good nutritional status

that had just died. Our rationale was that muscle tissue of active

species uses O2 at a high rate, and is thus characterised by a high

mitochondrial density and high lipid reserves. In contrast,

phlegmatic predators have muscles with low O2 consumption

and lower mitochondrial density and lower lipid reserves [50,51].

Standardized epaxial (swimming) muscle samples were collected

from cetaceans by the French National Stranding Network along

the Atlantic coasts of France between 2004 and 2010. Lipid

extraction from muscle after freeze-drying and grinding followed

standard analytical procedure [52], and total lipid content was

measured with an Iatroscan after depositing concentrated aliquots

of the lipid extracts onto Chromarods SII. To provide the

mitochondrial density of muscle, we extracted total DNA from the

same muscle samples using DNeasy Tissue kits (Qiagen).

Amplification of DLOOP mitochondrial gene was then done by

polymerase chain reaction using specific primers and a constant

number of cycles for all samples. All PCR products and a standard

dilution range were electrophoresed to determine the initial

quantity of mitochondrial DNA in the muscle sample. Finally for

each sample, we calculated mitochondrial density as the ratio

between mitochondrial DNA and total DNA quantities.

Data Analysis
We identified groups of cetaceans that had similar qualities of

diets (energy densities) or metabolic costs of living (lipid content or

mitochondrial densities of muscles) using Ward’s hierarchical

cluster analysis [53] calculated using the Euclidean dissimilarity

coefficient of the species-individual matrix. The number of clusters

representing the different classes of diet quality or costs of living

was confirmed using non-parametric multiple pairwise comparison

tests. We thus tested the among-species variability with non-

parametric permutation-based one-way ANOVAs using species as

a fixed factor. Permutation procedures were used if the residuals

were not normally distributed, and multiple comparison tests (i.e.,

Conover-Inman non-parametric multiple pairwise comparison

test) were conducted if interspecific differences were significant.

Finally, we determined the significance of relationships between

diet quality, cost of living and body mass using Pearson’s

Table 1. Sampling by cetacean species used for
mitochondrial density and lipid content of the muscle.

NUMBER OF INDIVIDUALS

Mitochondries Lipids

Minke whale 6 5

Fin whale 8 4

Common dolphin 10 7

Striped dolphin 7 3

Bottlenose dolphin 7 5

Long-finned pilot whale 4 2

Harbour porpoise 5 4

Mesoplodon beaked whales 4 3

Cuvier’s beaked whale 5 4

Pygmy sperm whale 2 -

Sperm whale 2 -

doi:10.1371/journal.pone.0050096.t001
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correlation tests and linear models corrected for the non-

independency of the error variance structure. All statistical

analyses were performed with R software version 2.8.1. [54].

Results

Mean energetic densities of the diet (MEDD) calculated for

cetacean species and structural indicators of muscle performance

showed a broad range of interspecific values and low intraspecific

variations (Fig. 1). The mean energetic densities of the diet ranged

from 1.7 to 7.2 kJ?g21 (Fig. 1A). Three significant groups were

distinguished by statistical analyses, (i) cetaceans with a high diet

quality (MEDD.5.5 kJ?g21) including common dolphin, harbour

porpoise and minke whale (Group a Fig. 1A); (ii) cetaceans with

a medium diet quality such as bottlenose dolphin, striped dolphin

or long-finned pilot whale (Group b; Fig. 1A), and (iii) cetaceans

with a low diet quality (MEDD,4.0 kJ?g21) such as the sperm

whale, pygmy sperm whale or Cuvier’s beaked whale (Group c;

Fig. 1A).

The mitochondrial densities of skeletal muscle showed a 15%

relative difference measured between the species showing the

lower mitochondrial density (the sperm whale) and the species with

the highest mitochondrial density (the harbour porpoise) (Fig. 1B).

Three significantly distinct groups were also identified, from

cetaceans with high mitochondrial densities such as the common

dolphin, harbour porpoise and minke whale (Group a; Fig. 1B), to

cetaceans with low mitochondrial densities such as the sperm

whale, pygmy sperm whale or Cuvier’s beaked whale (Group c;

Fig. 1B).

Total lipid content in muscle varied from 1.4 to 3.7% of the

total dry muscle mass (Fig. 1C). Three significantly distinct groups

were again identified: (i) the common dolphin that exhibited the

highest values (.3%) (Group a; Fig. 1C), (ii) a group encompassing

the bottlenose dolphin, harbour porpoise and fin whale that

presented medium lipid contents (2–3%) (Group b; Fig. 1C), and

(iii) other cetaceans, such as the beaked whales, which had lower

lipid contents (,2%) (Group c; Fig. 1C). The two measures used as

proxies for the metabolic cost of living–the mitochondrial density

and the total lipid content–were based on muscle performance and

were correlated (Pearson correlation test, P,0.005), confirming

that these two structural characteristics co-vary positively within

skeletal muscles of marine mammals.

In testing relationships between diet quality, body mass, and

metabolic cost of living to better understand the dietary choices

made by cetaceans, we found no relationship between body mass

and cost of living (Pearson correlation test, r2 = 0.113, P.0.05;

Fig. 2A). There was a significant relationship between body mass

and diet quality, but the explained variance was low (Pearson

correlation test, r2 = 0.228, P,0.001; Fig. 2B). The strongest

relationship occurred between diet quality and the cost of living

(Pearson correlation test, r2 = 0.633, P,0.001; Fig. 2C).

The cluster analysis of the three combined proxies (muscle

mitochondrial density, muscle lipid content and diet quality)

categorized cetaceans into three groups marked by different

ecological strategies according to the quality of the prey they

consumed (Fig. 3A). Species that fed on high quality foods with

corresponding high metabolic costs of living included the common

dolphin and harbour porpoise, while those that met their

moderate cost of living with moderate quality foods included the

bottlenose dolphin and fin whale. Species at the lowest end of the

scale with low quality diets and low costs of living included the

sperm whale and beaked-whales. This classification of ecological

strategies did not appear to be strongly linked with individual body

mass or phylogeny (Fig. 3)–as illustrated by common and striped

dolphins that belong to the same family and are morphologically

similar, but have different costs of living and different qualities of

diets. These two dolphin species contrast sharply with the

bottlenose dolphin and the fin whale that belong to different

sub-Orders and are morphologically different, but have similar

metabolic costs of living and similar qualities of diet (Fig. 3).

Discussion

As hypothesised, cetaceans at the species level have diets of

varying qualities and a wide range of costs of living. Our data show

that a significant relationship exists for all cetaceans between diet

quality and the metabolic cost of living from the smallest porpoise

to the largest baleen whale. This relationship appears to be

independent of body mass–and was not consistent with expecta-

tions stemming from the scaling relationship between body mass

and metabolism [4,55]. Our findings suggest that the variability

among cetaceans in the qualities of their diets and their costs of

living occurring at the species level are the consequences of

ecological strategies shaped by evolutionary processes rather than

physiological processes occurring at the phylogenetic or morpho-

metric levels (Fig. 3).

Foraging on mobile prey requires predators to travel over large

distances. It also requires the predators to use more energy to

pursue, catch, kill and handle their targets. In contrast, foraging

for food with no or low escape abilities reduces foraging costs [56].

Presumably, the costs of living dictate the minimum quality of food

that each species of cetaceans must consume to survive. Cetaceans

with higher metabolic costs of living must sustain themselves by

targeting prey species with higher caloric densities, while species at

the low end of the cost of living spectrum meet their needs by

feeding on low quality food, and may not have the muscle

performance needed to capture higher quality prey which are

mainly pelagic, gregarious and highly mobile.

Methodological Considerations
Cetaceans are large, long-lived and highly mobile species that

forage underwater in large home ranges. They are difficult to

observe in the wild, and many species are difficult or impossible to

study in captivity. The limitations of obtaining biological samples

from cetaceans [57,58] means that diet described by stomach

content analysis and structural characteristics of muscle measured

from by-caught and beach-cast individuals are subject to un-

certainty and biases that can affect perceptions of cetacean diets

and their muscle characteristics. In spite of the well-known

limitations of dietary analyses [59,60], stomach content analysis is

considered the best and most widely used method to quantify diets

of top marine predators [47]. The independent published studies

we used to describe the diet of each species were consistent with

one another, and give us confidence that our descriptions of diet

quality were reasonable for each species of cetacean in our study.

In terms of our measures of the metabolic costs of living, we

recognized from the outset that mitochondrial densities and lipid

contents in muscle can be affected by the origin of samples (i.e.,

carcasses of cetaceans). We therefore controlled our muscle

sampling by avoiding sick individuals and selected only mature

animals that were in good nutritional status and freshly killed (i.e.,

bycatch or beach-cast). This was made possible by the diversity of

marine mammals in the Bay of Biscay, and the large spatial-

temporal coverage of the French National Stranding Network that

accumulated a large bank of tissues and maintained necropsy

reports on sampled animals. Freezing and the causes of death were

not deemed to have affected the mitochondrial density and lipid

content of the muscle samples.

Predators’ Cost of Living and Prey Quality
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We took every precaution to limit known sources of bias and

uncertainty in our sampling protocols and laboratory analyses. As

such, our data reveal general patterns and relationships among

quality of diets and the lipid content and mitochondrial densities of

muscles that span a broad range of whales, dolphins and porpoise

in the North Atlantic. Most notably, our data reveal a strong

significant relationship between diet quality and the cost of living

that supports the hypothesis that cetaceans select prey based on

the quality of available species needed to meet their specific costs

of living. Statistical analyses consistently identified three groupings

of cetaceans based on similarities in the mean energy densities of

their diets, the mitochondrial densities of their muscles, and the

proportions of lipid in their muscles (Fig. 1). Of the three groups,

the third one (Group c) that had the poorest quality diets and

lowest costs of living had higher variation between individuals than

the other two groups. A larger sample size for some of species in

this third group would likely reduce this variability and give the

group greater coherence.

Implications on Ecological and Physiological Theories
The ‘‘food-habit hypothesis’’ [61] and the ‘‘muscle performance

hypothesis’’ [56] are two controversial theories that have been

proposed to explain the relative effects observed in experimental

studies of diet on basal or field metabolic rates [5,61,62]. However,

Figure 1. Differences between the quality of diets and the metabolic costs of living in cetaceans. Means6 s.d. with different letters (a, b,
c) show significantly different groups of cetaceans. A: Mean energy density of the diets (kJ?g21 wet mass). B: Cost of living as measured by the
mitochondrial density of the muscle. C: Cost of living as measured by the lipid content of the muscle (% dry mass). Colours reflect the group of
similarity identified for the mean energy density of diets: Group a in red, Group b in green and Group c in blue.
doi:10.1371/journal.pone.0050096.g001

Predators’ Cost of Living and Prey Quality
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we suggest that attempts to draw such meaningful associations

between the metabolism and qualitative dietary assessments have

generally fallen short because energy density (kJ?g21) rather than

food type (e.g., vertebrates versus invertebrates, or animals versus

plants) appears to be a more meaningful way to quantify diet

quality. Protein content, vitamins and micronutrients compositions

or digestibility are other measures of dietary quality, but energy

density offers a more robust and standard quantitative proxy of

diet quality that can be easily measured on a wide range of food

items.

The relationship between cost of living and diet quality can be

understood on different time scales. On an evolutionary time scale,

predator species that developed foraging strategies targeting

mobile prey would likely have increased their muscular perfor-

mance–and their basal and field metabolic rates in turn–to capture

prey compared to predators foraging on species with little or no

escape abilities [56]. However, on an ecological time scale, we

propose that the predator costs of living reflect and dictate the

quality of foods they consume, and that predator metabolic rates

are not driven by the quality of prey they consume. Thus, species

with higher costs of living must fulfil their energy requirements by

targeting prey species with higher caloric densities, while species

with lower costs need only to feed on low quality prey to thrive.

Consequently, the general relationship we found between diet

quality and the cost of living should apply to more species than just

whales, dolphins and porpoises. The quality of diet framework we

propose to understand the foraging ecology of cetaceans should

thus apply equally well to understanding the dietary choices and

needs of other animals such as birds, small terrestrial mammals or

reptiles [5,63,64].

Our findings are consistent with the optimal foraging theory

prediction that predators should prefer prey that yield more

energy than the energy expended to obtain it [12,65]. While this

prediction has generally been inferred to imply optimization of

Figure 2. Relationships between body mass, the quality of diet
and the metabolic cost of living in cetaceans. Cost of living is
represented only by mitochondrial density of the muscle (lipid content
of the muscle showed the same patterns but was measured for fewer
species). Each data point represents a single individual. A: Mitochondrial
density of the muscle as a function of log body mass (kg). B: Mean
energy density of diets (kJ?g21 wet mass) as a function of log body
mass (kg). C: Mean energy density of diets as a function of
mitochondrial density of the muscle.
doi:10.1371/journal.pone.0050096.g002

Figure 3. Branching diagrams showing the ecological and
evolutionary relationships among cetaceans. Sizes of the
cetaceans are shown to scale, and colours reflect whether the species
have high (red), moderate (green) or low (blue) costs of living. A: The
ecological strategy tree was produced using a cluster analysis of the
three combined indicators (mitochondrial density of the muscle, lipid
content of the muscle and diet quality). Species are arranged from
highest (top) to lowest (bottom) costs of living. B: The actual cetacean
phylogenetic tree [72]. Species are grouped by family from top to
bottom into Phocoenidae (harbour porpoise); Delphinidae (bottlenose,
striped and common dolphins, and long-finned pilot whale), Ziphiidae
(Cuvier’s beaked whale and Mesoplodon whales), Kogiidae (pygmy
sperm whale), Physeteridae (sperm whale) and Balaenopteridae (minke
and fin whales).
doi:10.1371/journal.pone.0050096.g003

Predators’ Cost of Living and Prey Quality

PLOS ONE | www.plosone.org 5 November 2012 | Volume 7 | Issue 11 | e50096



behavioural costs of foraging, we propose that it may also reflect

optimization of energy intake (to meet fixed costs of living) relative

to the stomach capacity of the predator. Hence, predators must

have an adaptable foraging strategy in terms of foraging behaviour

and functional prey selection that is directly related to their specific

energy requirements.

Although we reason that foraging strategies are largely

influenced by the metabolic costs of living, we recognize that life

history and ontogeny also contribute to the ultimate cost of living

such that species can differentially allocate energy intake towards

growth, survival or reproduction [66,67]. Specific reproductive

strategies may also modify seasonally energy needs of some species

depending on the duration of the reproductive period or parental

care [68,69]. All such demands impact the cost of living, and are

best sustained by an increase in food quality. In our study, we

limited the effect of life history on the cost of living within species

by only studying adults with similar reproductive strategies and

status (e.g., no pregnant or lactating females). Future studies that

incorporate life-history variability (e.g., inter-birth interval or

migration patterns) may further explain some of the variability we

observed in the relationship between muscle performance and diet

quality.

Implications on Wildlife Conservation
Marine biodiversity is being widely affected by climatic shifts

and the human impacts of global warming and fishing [70,71]. A

number of ecosystems are seeing the emergence of junk-food as

biodiversity is perturbed and ecosystems shift from high-quality

species (i.e., species with high energy densities per mass unit) to

low-quality species [13]. Consequently, the population dynamics

of species with high costs of living (such as some species of marine

birds and mammals) may be negatively affected by the increased

abundance of junk-food in marine ecosystems [13].

The relationship between diet quality and cost of living alters

current understanding of the foraging ecology of top marine

predators and has bearing on wildlife conservation. Our results

suggest that the risk to cetaceans faced with changes in the quality

and quantity of prey available to them varies among cetaceans

species and is closely linked to the costs of living of each species.

Hence, the sensitivity of cetaceans to changes in the prey available

to them will be higher for those species that have higher costs of

living than they will be for species of cetaceans that thrive on low

quality diets. This is because predators that can thrive on low

quality food are likely to have more options than those that must

meet their nutritional requirements with the higher quality prey

species. A classification of cetaceans based on the three energetic

categories we identified could be used to prioritize monitoring and

management efforts at a species level within marine ecosystems

subjected to human exploitation and global changes.

Conclusions
Major insights into the ecology and physiology of animals that

are difficult to study (either because they are too large to be

handled, or are cryptic, protected, or even extinct) can likely be

obtained by quantifying the quality of their diets (in terms of

energy content) and deriving proxies for their costs of living (in

terms of muscle performance). Our application of this approach

suggests that the costs of living dictate the quality of food that

cetaceans must consume to survive. This relationship is consistent

with ecological expectations associated with the cost of living and

the co-evolution of predator-prey relationships, but is inconsistent

with phylogenetic and body mass expectations. We believe our

study is a first step towards developing an energetically-based

unifying theory about prey-predator relationship that may help to

better understand the ecology of predators and guide future

wildlife conservation.
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